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Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy
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Electron energy loss spectroscopy performed in transmission electron microscopes is shown to directly
render the photonic local density of states with unprecedented spatial resolution, currently below the
nanometer. Two special cases are discussed in detail: (i) 2D photonic structures with the electrons moving
along the translational axis of symmetry and (ii) quasiplanar plasmonic structures under normal incidence.
Nanophotonics in general and plasmonics, in particular, should benefit from these results connecting the
unmatched spatial resolution of electron energy loss spectroscopy with its ability to probe basic optical

properties such as the photonic local density of states.
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While a plethora of nanophotonic structures is currently
being devised for diverse applications like achieving single
molecule sensitivity in biosensing [1] or molding the flow
of light over nanoscale distances for signal processing [2],
no optical characterization technique exists that can render
spectroscopic details with truly nanometer spatial resolu-
tion. The need for that kind of technique is particularly
acute in nanometric plasmonic designs that benefit from
sharp edges and metallic surfaces in close proximity to
yield large enhancements of the electromagnetic field.

Scanning transmission electron microscopes (STEM)
can plausibly cover this gap, as they perform electron
energy loss spectroscopy (EELS) with increasingly im-
proved energy resolution that is quickly approaching the
width of plasmon excitations in noble metals [3] and with
spatial resolution well below the nanometer [4]. The con-
nection between EELS and photonics can be readily estab-
lished when low-energy losses in the sub-eV to a few eV
range are considered, compatible with typical photon en-
ergies in photonic devices. A formidable amount of infor-
mation is available in the literature for this so-called
valence EELS, including for instance studies of single
nanoparticles of various shapes [3,5], interacting nanopar-
ticles [6], thin films [7], composite metamaterials [8], and
carbon nanostructures [9]. Many of these reports are rele-
vant to current nanophotonics research, in which the opti-
cal response of nanoparticles, nanoparticle assemblies, and
patterned nanostructures plays a central role. In this con-
text, EELS has been recently demonstrated to image plas-
mon modes with spatial resolution better than a hundredth
of the wavelength in triangular nanoprisms [3]. However,
despite significant progress from the theoretical side [10],
no synthetic and universal picture has emerged to explain
the spatial modulation of EELS measurements on arbitrary
nanostructures.

In this Letter, we show that EELS provides direct infor-
mation on the photonic local density of states (LDOS), and
thus it constitutes a suitable tool for truly nanometric
characterization of photonic nanostructures. A rigorous
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derivation of this statement is offered, illustrated by nu-
merical examples for both translationally invariant geome-
tries and planar structures. Our results allow directly
interpreting EELS data in terms of local photonic proper-
ties that encompass the full display of optical phenomena
exhibited by nanostructures, ranging from localized and
propagating plasmons in patterned metallic surfaces [6] to
band gaps in dielectric photonic crystals [11].

Green tensor and LDOS.—The optical response of a
nanostructure is fully captured in its electric Green tensor
and its LDOS [12]. In particular, the electric field produced
by an external current density j(r, @) in an inhomogeneous
medium of permittivity e(r, ) can be written in frequency
space @ as

E(r, 0) = —47mio ] G, 0)jir, ©) (1)
in terms of G, the electric Green tensor of Maxwell’s

equations in Gaussian units, satisfying

VXV XG(r, w)
— (@?/)e(r, )G, 1, ) = :—j Sr—r1) Q)

and vanishing far away from the sources.
We then define the LDOS projected along a unit vector i
as [13]

palr, w) = ;iw Im{fh - G(r, r, w) - Ai}. 3)

In free space, the uniform LDOS is known from blackbody
theory (with a factor of 1/3 arising from projection over a
specific Cartesian direction fi):

pA(r, w) = w?/3mc3. 4)

Similar to its electron counterpart in solid state physics, the
photonic LDOS equals the combined local intensity of all
eigenmodes of the system under consideration, provided
they are well defined (e.g., in the absence of lossy media)
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[14]. An alternative interpretation, which holds even in the
presence of lossy materials [15], comes from the realiza-
tion that (4772w D?/h)p is the decay rate for an excitation
dipole strength D [16,17]. Finally, we point out that a
complete definition of the LDOS should include a mag-
netic part [18], which is however uncoupled to our fast
electrons.

Energy loss probability.—The energy loss suffered by a
fast electron passing near an inhomogeneous sample and
moving with constant velocity v along a straight line
trajectory r = r,(#) can be related to the force exerted by
the induced electric field E" acting back on the electron as
[19]

AE=c¢ fdtv -EM[r,(2), 1] = foo hodoT(w), (5)
0

where the —e electron charge has been included (i.e.,
AE > 0) and

M) = —— f drRe{e— @ty - EM[r, (1), 0]} (6)

is the loss probability. The Fourier transform
. d . .
Emd(l‘, [) — [_wefm)tEmd(r’ w) (7)
2

has been introduced and the property EM(r, w) =
[E(r, —w)]* has been used.

The external current density corresponding to the mov-
ing electron is now given by

jr o) = —evfdt el S[r —r, (1] (8)

Assuming without loss of generality that the velocity vec-
tor is directed along the positive z axis and using the
notation r = (R, z), with R = (x, y), the current density
reduces to

j(r, w) = —e8(R — Ry)e'®?/?z, 9)

where Ry = (x, yo) is the 2D impact parameter of the
electron trajectory relative to the z axis. Inserting Eq. (9)
into Eq. (1), and this in turn into Eq. (6), we find

4e2?
h

X jdtdt’ Im{e! =G [r, (1), 1,(¢'), ®]},
(10)

where G,, = 2 - G - Z, the dependence of the loss proba-
bility " on R is shown explicitly, and G™ denotes the
induced Green tensor obtained from G by subtracting the
free-space Green tensor.

Relation between EELS and LDOS.—Noticing that
z.(t) = vt, the time integrals of Eq. (10) yield the
Fourier transform of the induced Green tensor with respect
to z and 7/, GY(R, R/, ¢, —¢', w), in terms of which I’

1—‘I(l{Or w) = -

becomes

4¢? .
F(Ro, w) == — T Im{Glng(Ro, Ro, q, —¢q, a))}

_ 27re?
how

pi(RO’ 9, w)r (11)

where ¢ = w/v and we have defined
—2w . N
pa(R, ¢, w) = ——1Im{h - G(R,R, ¢, —¢, ®) - i} (12)
T

as a generalized density of states that is local in real space
along the R directions and local in momentum space along
the remaining z direction, parallel to the electron velocity
vector.

The value of ¢ = w/v reflects conservation of energy
and momentum in the transfer of excitations of frequency
o and momentum /g from the electron to the sample. It is
interesting to note that for an electron moving in an infinite
vacuum one has

w

pi(R, g, ) =L (1= g*c*/w?)0(w/c — q), (13)

27c?
which is always zero for subluminal electrons moving with
velocity v < c. Here, L is the quantization length along z.
As expected, the vacuum density of states does not con-
tribute to the EELS signal, and this allows dropping the
superscript ind from Eq. (11), as it has been implicitly
assumed already when writing Eq. (12). Incidentally, the
Cherenkov effect is deduced from p;(R,q, )=
(Lw/2mc?)(1 — g*c*/w?€)0(ew?/c* — ¢*), valid for a
homogeneous dielectric of real permittivity e.

The proposed formalism yields exactly the same results
as any other local, retarded theory, but it provides a new
paradigm for understanding EELS as connected to a local
quantity: the LDOS. This is in contrast to the common view
of EELS as a tool capable of retrieving local electronic
properties hidden in the permittivity, which is in turn
involved in the nonlocal response of inhomogeneous struc-
tures probed by the electrons and has resulted in endless
discussions regarding how to eliminate delocalization.

2D systems possessing translational invariance.—If the
sample under consideration is translationally invariant
along z, the Green tensor G(r, r’/, w) depends on z and z’
only via z — 7/, and thus one can write

dg - -
Gr v, ) = [ z—qG(R, R, g w)eidc),  (14)
T

where G(R,R’,q, w)=(1/L)G(R,R’,q, —¢q, w). Accord-
ingly, the local density of states can be decomposed into
momenta components 7g along the z axis,

d
palr, w) = f ™ pa(R.g o), (15)

where
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FaR, ¢ o) = —2 Im{i - GR, R, ¢, @) - A}
a

= %Pﬁ(R, q, ®). (16)

Finally, combining Eqgs. (11) and (16), one finds a relation
between the loss probability per unit of path length and the
LDOS,

'Ry, w) _ 27e?
L how

p:(Ry, ¢, ), (17)

with ¢ = w/v.

Equation (17) provides a solid link between LDOS and
EELS in a wide class of geometries that includes aloof
trajectories in semi-infinite surfaces and thin films.
Interestingly, only g > w/c values are probed, lying out-
side the light cone, and therefore difficult to study via
optical techniques. Trapped modes such as surface-
plasmon polaritons lie in that region and are a natural
target for application of our results. Besides, the present
study can be directly applied to cathodoluminescence (CL)
in all-dielectric structures, in which energy loss and CL
emission probabilities are identical.

A connection between the photonic density of states in
momentum space and EELS has been previously reported
for electrons moving parallel to pores in 2D self-assembled
alumina photonic crystals [11]. However, the above deri-
vation is the first proof to our knowledge that a formal
relation exists between LDOS and EELS.

For illustration, we offer in Fig. 1 the EELS probability
for electrons moving inside a finite hexagonal 2D crystal of
aligned Si nanowires, calculated with the boundary ele-
ment method (BEM) [20]. The photon wavelength range
under consideration includes two Mie modes of the iso-
lated wire (broken curve), and significant hybridization
between neighboring wires takes place in the array. The
loss probability varies relatively smoothly with impact
parameter, a behavior which was expected in the LDOS
for photon wavelengths relatively large compared to the
diameter of the cylinders. Interestingly, the loss probability
takes significant values in the interstitial regions, several
tens of nanometers away from the Si. Finite structures like
that considered in Fig. 1 present a colorful evolution of
modes, the analysis of which can be useful for instance in
the design of microlaser cavities. In infinite crystals, the
loss probability exhibits van Hove singularities [21], which
follow rigorously those of the LDOS in translationally
invariant systems according to Eq. (17).

Planar geometries.—As microchip features continue to
shrink, lithographically patterned metal structures are be-
coming natural candidates to replace current electronic
microcircuits. The new structures will operate at frequen-
cies above the terahertz rather than gigahertz, and will
carry electric signals strongly mixed with the electromag-
netic fields that they generate in what is known as surface
plasmons. The optical properties of metallic planar struc-
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FIG. 1 (color online). EELS probability for 200-keV electrons
moving parallel to an array of 13 Si nanowires of 300 nm in
diameter (solid curve), as compared to an isolated nanowire
(broken curve). The nanowires are arranged in a hexagonal
lattice with a period of 350 nm. The contour-plot insets show
the impact-parameter dependence of the EELS probability for
selected energy losses (labeled A—G), with the position of the
electron beam considered in the curves indicated by an open
symbol and the cylinder contours shown by dashed curves.

tures are routinely obtained using scanning near-field opti-
cal microscopy, although the lateral resolution of this
technique can hardly reach 50 nm. Here again EELS
renders much higher lateral resolution (down to the nano-
meter) and permits obtaining information directly related
to the LDOS. Besides the formal relation between EELS
and the momentum-resolved LDOS expressed in Eq. (11),
we offer in Fig. 2 a more detailed comparison between
EELS and p(r, w) (local in all spatial directions) for an Ag
disk calculated with BEM [20]. This figure proves how the
EELS probability can mimic quite closely p.(r, ), with z
perpendicular to the planar structure and parallel to the
electron velocity. This resemblance holds for different
accelerating voltages, making the interpretation robust
with respect to experimental details. Figure 2 provides a
solid example supporting the use of EELS to measure
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plasmon intensities with unprecedented lateral resolution.
A first demonstration of such types of measurements has
been recently reported [3].

We thus conclude that the energy loss probability is
directly related to the local density of states in arbitrary
systems, where we understand locality in real space for the
directions perpendicular to the electron trajectory and in
momentum space along the direction of the electron ve-
locity vector. In 2D systems and for electrons moving
along the direction of translational symmetry, the loss
probability is exactly proportional to the photonic local
density of states projected on the trajectory and decom-
posed into parallel momentum transfers 7g. Numerical
examples have been presented showing a similar relation
between LDOS outside planar metallic disks and EELS
spectra for electrons traversing them perpendicularly. Our
results provide a solid foundation for the use of EELS
performed in STEMs to directly probe photonic properties
of nanostructures.
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